

US010485090B2

(12) United States Patent

Myneni

(10) Patent No.: US 10,485,090 B2

(45) **Date of Patent:** Nov. 19, 2019

(54) HIGH PERFORMANCE SRF ACCELERATOR STRUCTURE AND METHOD

(71) Applicant: **JEFFERSON SCIENCE**

ASSOCIATES, LLC, Newport News,

VA (US)

(72) Inventor: Ganapati Rao Myneni, Yorktown, VA

(US)

(73) Assignee: JEFFERSON SCIENCE

ASSOCIATES, LLC, Newport News,

VA (US)

(*) Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35

U.S.C. 154(b) by 434 days.

(21) Appl. No.: 15/411,986

(22) Filed: Jan. 21, 2017

(65) Prior Publication Data

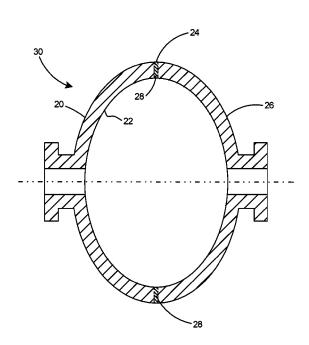
US 2017/0215268 A1 Jul. 27, 2017

Related U.S. Application Data

- (60) Provisional application No. 62/281,846, filed on Jan. 22, 2016.
- (51) **Int. Cl.** *H05H 7/20* (2006.01)
- (52) **U.S. CI.** CPC *H05H 7/20* (2013.01)

(56) References Cited

U.S. PATENT DOCUMENTS


4,127,452 A	11/1978	Martens
4,765,055 A	8/1988	Ozaki et al.
6,097,153 A	8/2000	Brawley et al.
8,128,765 B2		Myneni et al.
8,731,628 B1	5/2014	Agassi et al.
9,006,147 B2	4/2015	Taylor et al.
9,343,649 B1	5/2016	Cooper
9,352,416 B2	5/2016	Khare et al.
2012/0094839 A1*	4/2012	Khare B23K 26/0823
		505/210
2012/0144890 A1*	6/2012	Miyasaka C21D 7/06
		72/53
2017/0006695 A1	1/2017	Jain et al.
* cited by examiner		

Primary Examiner — Paul A Wartalowicz

(57) ABSTRACT

A high performance accelerator structure and method of production. The method includes precision machining the inner surfaces of a pair of half-cells that are maintained in an inert atmosphere and at a temperature of 100 K or less. The method includes removing thin layers of the inner surfaces of the half-cells after which the roughness of the inner surfaces in measured with a profilimeter. Additional thin layers are removed until the inner surfaces of the half-cell measure less than 2 nm root mean square (RMS) roughness over a 1 mm² area on the profilimeter. The two half-cells are welded together in an inert atmosphere to form an SRF cavity. The resultant SRF cavity includes a high accelerating gradient (E_{acc}) and a high quality factor (Q_0).

7 Claims, 3 Drawing Sheets

